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Results of laboratory experiments are used to determine the morphology and the 
ascent rate of growing buoyant plumes in a homogeneous, viscous fluid. The plumes 
were formed by injecting a glucose solution through a small orifice into another 
glucose solution of different density. Two classes of creeping (low-Reynolds-number) 
plumes are investigated: (i) diapiric plumes, for which the plume viscosity is 
approximately equal to the ambient-fluid viscosity, and (ii) cavity plumes, for which 
the plume fluid is much less viscous than the ambient fluid. Fully developed diapirs 
consist of a tapered cylindrical stem capped by a mushroom-shaped vortex at its 
leading edge. Fully developed cavity plumes consist of a nearly spherical chamber 
connected to the source by a narrow umbilical conduit. It is observed that the ascent 
velocity of cavity plumes increases with time as ti. The ascent velocity of diapirs is 
found to be proportional to the terminal velocity of a cylinder moving parallel to its 
axis. The presence of pre-existing conduits alters the morphology of cavity plumes 
and greatly increases their ascent rate. Fossil conduits act as plume guides by offering 
low-resistance ascent paths. Finally, a series of experiments have been made on the 
interaction between cavity plumes and a large-scale background circulation. A 
low-viscosity plume generated by a source towed steadily through a highly viscous 
fluid breaks into a chain of regularly spaced, individual cavities, as first demonstrated 
by Skilbeck & Whitehead. The cavities ascend as an inclined linear array of Stokes 
droplets. Dimensional analysis is used to derive scaling laws for the cavity volumes 
and their replication rate in terms of the source parameters and the tow speed. The 
qualitative results from these experiments generally lend support to the hypothesis 
that buoyant plumes in the Earth’s mantle are the source of hot-spot volcanism. In 
particular the experiments suggest an explanation for the observation that hot spots 
remain nearly fixed in the presence of mantle convection. 

1. Introduction 
A buoyant plume is formed by injecting fluid from a localized source into an 

ambient fluid having a different density. If the Reynolds number of the circulation 
around the buoyant region is much less than one, it can be called a creeping plume. 
By comparing the viscosities of the buoyant and the ambient fluids, two classes of 
creeping plumes may be distinguished. The first class are diapiric plumes, in which 
the viscosity of the buoyant fluid is approximately the same as that of the ambient 
fluid. The second class are cavity plumes, in which the buoyant fluid is much less 
viscous than the ambient. 

In this paper results of laboratory experiments are used to determine the 
morphology and the ascent rate of both classes of creeping plumes. In addition, a 
study is made of cavity plumes generated by a moving source, which simulates the 
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interaction of creeping plumes with a convective environment. The objective is to 
derive some asymptotic scaling laws which can be used, by extrapolation, to infer 
the behaviour of buoyant plumes in the Earth’s mantle. 
Thedynamicsofplumegrowthunder large-Reynolds-number (turbulent) conditions 

already has an extensive literature (see reviews by Turner 1969,1979). For example, 
a process analogous to that described in 55, the interaction of turbulent plumes with 
a background wind, has been studied for more than 30 years (Morton, Taylor & Turner 
1956; Slawson & Csanady 1967, 1971). 

Most of the previous work on creeping plumes has been concerned with steady-state 
motion. The classical problem for creeping plumes has been the steady convection 
produced by linear or point heat sources. Similarity solutions have been obtained for 
steady-state plumes in isoviscous fluids (for example, Fujii 1963; Brand & Lahey 
1967 ; Roberts 1977) and in thermoviscous and non-Newtonian fluids (Spaulding & 
Cruddace 1961 ; Yuen & Schubert 1976). 

In contrast, the literature on the development, or growth, of creeping plumes is 
far smaller. Morris (1985) has obtained an approximate asymptotic solution for the 
growth of two-dimensional diapirs in an isoviscous half-space. Two-dimensional 
numerical experiments on diapir formation and growth from thermal boundary-layer 
instabilities in isoviscous fluids have been made by Foster (1971) and Boss & Sacks 
(1985) and in thermoviscous fluids by Christensen (1984). 

The use of fluid experiments as a means to study mantle plumes was initiated by 
Whitehead and coworkers (Whitehead & Luther 1975; Skilbeck & Whitehead 1978; 
Whitehead 1982). Many of the effects presented in this paper, as well as the 
descriptive terminology, can be found in these earlier works. What is novel here is 
the emphasis. The studies cited above were concerned mostly with low-Reynolds- 
number instabilities that lead to the formation of creeping plumes. In  this work the 
emphasis is placed on the behaviour of fully developed creeping plumes. 

2. The mantle-plume hypothesis 
The hypothesis of mantle plumes was put forth by Morgan (1971, 1972) to explain 

the origin of hot spots. Morgan envisioned plumes to be hot, low-viscosity material 
rising buoyantly through the upper mantle in narrow conduits. The surface expression 
of mantle plumes are hot spots - localized, nearly stationary centres of volcanic 
activity that persist for as long as 200 myr. 

The number of hot spots is a matter of debate. Morgan originally found evidence 
for approximately 20; others have compiled lists with many more (Crough t Jurdy 
1980). However, there are at least a dozen, principally oceanic ones, that are included 
on all lists. These, as well as several more speculative ones, are shown in figure 1 .  

The prominent oceanic hot spots exhibit several common characteristics, indicating 
that they all have been formed by the same process. First, many oceanic hot spots 
lie at the terminus of a linear volcanic ridge or a linear chain of discrete volcanic 
islands. The islands have a regular age progression, the island age increasing away 
from the hot spot. It is generally agreed that these mark the track of the hot spot 
in the lithosphere as the lithosphere moved over the hot spot. 

A second characteristic is that hot-spot tracks are centred along the axis of broad 
topographic swells in the sea floor. Lateral profiles of the swell closely approximate 
to Gaussian curves with half-widths of 200-400 km. At the hot spots the swells rise 
to an elevation of about 1.6 km above the ambient sea floor of the same age. Away 
from the hot spot the swells evolve in a systematic fashion, as documented by Crough 
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FIGURE 1.  Worldwide distribution of prominent hot spots, with hot-spot tracks and the lithospheric 
plate system. 1 ,  Hawaii (Hawaiian Island-Emperor Seamount Chain); 2, Easter Island (Sala y 
Gomez-Nazca Ridge and Tuomoto-Line Island Chain) ; 3, Macdonald Seamount (Austral-Gilbert- 
Marshall Island Chain); 4, Bellany Island; 5, Cobb Seamount (Juan de Fuca Ridge) ; 6, Yellowstone 
(Snake River Plain-Columbia Plateau); 7,  Galapagos Islands; 8, Bermuda; 9, Iceland; 10, Azores; 
11 ,  Canary Islands; 12, Cape Verde Islands; 13, St Helena; 14, Tristan da Cunha (Rio Grande Ridge, 
westward; Walvis Ridge, eastward); 15, Bouvet Island; 16, Prince Edward Island; 17, Reunion 
Island (MauritiusPlateau andChagos-Laccadive Ridge) ; 18, Afar; 19, Eifel (CarpathianMountains) ; 
20, Amsterdam Island-Kerguelen (Ninety-East Ridge). 

(1978). The height of the swell decays with age in a way similar to the decrease in 
elevation with age seen on the flanks of the mid-ocean ridges. Crough (1978) and 
Haxby & Turcotte (1978) have shown, using geoid/topography ratios, that the swells 
are the isostatic response to low-density mantle at depths of 5O-IOO km. The inference 
drawn from these facts is that the swell is the result of collapsed plumes which have 
spread out at the base of the lithosphere. The volume of buoyant material needed 
to produce the swell far exceeds the volume of erupted volcanics. Evidently the 
volcanics comprise only a small fraction of the total mass of the plume. Most of the 
plume collapses beneath the lithosphere and heats i t  from below (Von Herzen et al. 
1982) without erupting. Particular significance can be attached to the fact that the 
swell is isostatically compensated within the first few hundred kilometres depth. The 
swell is not produced by a plume 600 km in diameter extending deep into the mantle. 
Indeed, shallow compensation indicates that the source is not continuous to great 
depths. This inference would seem to pose a dilemma for the plume hypothesis. In 
fact, discontinuous plumes arise naturally from the interaction between cavity 
plumes and large-scale circulation, as shown by Whitehead (1982). The experimental 
results of $5 are used to quantify this effect. 

The third critical observation, perhaps the most significant, is hot-spot fixity. The 
trajectories of hot-spot tracks closely approximate the trajectories of the plates on 
which they lie. Thus hot-spot positions are either fixed (Morgan 1981) or at  most 
move with relative velocities of 0 ( 1  mm/yr) (Molnar & Atwater 1973) - an order 
of magnitude below plate velocities. 

Hot-spot fixity has led to the notion that if plumes originate in the lower mantle 
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there must be only vertical convective motion there, for otherwise the plumes would 
be swept around and the hot spots would appear to drift. This paradox led Stacey 
& Loper (1983) to propose a model for lower-mantle convection in which the 
circulation is vertical outside thin boundary layers. However, experiments on 
convection in thermoviscous fluids (Booker 1976; Nataf & Richter 1982) indicate that 
the flow pattern is cellular, even when strong temperature-dependent viscous effects 
are present. Thus it seems unjustified to  ignore the influence of horizontal convective 
transport on mantle plumes. 

I n  $6 we present a dynamic model to account for hot-spot fixity that is based on 
the experimental results of plumes with horizontal transport. We demonstrate that  
the drift of plume-generated hot spots depends on the net transport in the mantle 
between the source region and the lithosphere. The net horizontal transport in cellular 
convection is usually small; thus hot spots can appear to  remain fixed even in the 
presence of mantle convection. 

3. Creeping plumes from a stationary source 
3.1. Experiments 

The objective of these experiments is to  determine the morphology and rate of ascent 
of creeping plumes generated by a stationary source in an essentially unbounded 
viscous fluid. The working fluid used in all the experiments reported on here is Globe 
1132 glucose syrup. Globe 1 132 is a polysaccharide solution with a base concentration 
of 80.3% sugar solids. The sugar composition of the base solution is as follows: 
dextrose, 19 % ; maltose, 14 yo ; maltriose, 12 yo ; other saccharides, 55 yo. The base 
solution has a density of 1.424 g/cm3 and a viscosity of approximately 1150 poise 
at 21.5 "C. Addition of water to the base solution is equivalent to heating: both 
viscosity and density are reduced. The dependence of viscosity on the temperature 
of the base solution is given in Olson (1984). However, for the study of creeping 
plumes, compositional buoyancy offers a number of experimental advantages over 
thermal buoyancy. First, a viscosity range from approximately lo3 to  lop2 poise can 
be obtained. Secondly, the buoyant fluid can be marked with dye as a part of the 
dilution. Thirdly, the PBclet number is large even for very small plumes. This is an 
important consideration. The PBclet number for thermal convection in the mantle 
is O( lo3) : for mantle plumes it is probably somewhat smaller than this, but still much 
greater than unity. In  a creeping-plume experiment, the plumes must be kept small 
in order to avoid unwanted wall effects, and with this restriction i t  becomes difficult 
to  keep the PBclet number large if heat is used for buoyancy. By contrast, the mass 
diffusivity in glucose solutions is so small that  the PBclet number based on component 
diffusion is always large in practice. The fourth advantage in using dilution is that 
both diapirs and cavity plumes can be produced. Descending diapirs are produced 
by injecting the base solution into a slightly diluted ambient solution ; ascending 
cavity plumes are produced by injecting a very dilute solution into an  ambient base 
solution. 

The experiments were done in a glass tank with horizontal dimensions 27 x 27 em, 
filled to a depth of 34 em. Dyed plume fluid was injected through a constant-head 
device consisting of a drawn-glass needle connected to a burette, which served as a 
reservoir. The reservoir volume, accurate to  & ml, was monitored as a function of time 
to give the plume discharge. For each plume the source discharge and buoyancy were 
held constant. The glass needle was immersed to a depth of 3 cm for descending 
diapirs, and i t  was suspended 4 em from the bottom for the ascending cavity plumes. 
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FIGURE 2. A sequence illustrating the development of a creeping 
diapiric plume from a stationary source. 

Diapirs were allowed to grow to approximately 15 cm in length, cavity plumes to 
approximately 20 cm. These were the lengths a t  which it was judged that wall effects 
could begin to be felt. Changes in the plumes’ morphology were recorded 
photographically. In addition to their general morphology, the basic numerical data 
consisted of plume length W ~ T S U S  time. 

Figure 2 illustrates the development of a typical diapir. The infant diapir quickly 
swells to a characteristic diameter, and that diameter remains nearly constant 
(decreasing only slightly) throughout its subsequent evolution. As the diapir grows 
it begins to develop a mushroom-shaped cap a t  its leading edge. The cap rises slightly 
faster than the stem, and this is revealed by a gradual stretching, just detectable in 
figure 2. The cap grows at a rate which is much less than the source-discharge rate 
and so, when fully developed, most of the plume’s mass resides in the stem rather 
than in the cap. The left-hand panel in figure 3 shows the cap of a fully developed 
diapir. 

As shown in the right panel of figure 3, the morphology of cavity plumes is quite 
different. A cavity plume consists of a nearly spherical chamber connected to the 
source by a thin umbilical conduit. The low-viscosity plume fluid travels up the 
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FIQURE 3. The leading edges of creeping plumes. Left is a 
diapiric plume, right is a cavity plume. 

conduit as in pipe flow. Because the viscosity contrast between the plume and the 
ambient fluid is very large, the fluid velocity within the conduit far exceeds the ascent 
rate of the spherical cavity. Consequently, the volume of plume fluid stored within 
the conduit at any given time is much less than the volume stored within the cavity. 
The cavity volume grows a t  a rate which is nearly as large as the source discharge. 
This morphology is essentially that of a growing Stokes droplet with a trailing 
conduit, as in the model proposed by Whitehead & Luther (1975). 

To a first approximation, diapiric plumes are nearly cylindrical and cavity plumes 
are nearly spherical. However, it was found that cavity plumes must be treated as 
composite bodies in that both the cavity and the conduit influence the ascent rate. 

Ascent-rate data have been analysed for 11 diapirs and 3 cavity plumes, representing 
a range of source discharge, plume buoyancy and ambient-fluid viscosity. The raw 
data for these plumes is given in figures 4 and 5. For diapiric plumes, length refers 
to the total body length ; for cavity plumes, length refers to distance from the source 
tip to the centre of the spherical cavity. The duration of the experiments ranged from 
a minimum of 300 s for the fastest cavity plume to a maximum of 36500 s for the 
slowest diapir . 

3.2.  Equivalent-cylinder model for diapir ascent 
To a first approximation, diapiric plumes have a cylindrical morphology, which 
suggests that their ascent can be modelled as the rise of growing, buoyant cylinders. 
The low-Reynolds-number terminal velocity W of a vertical cylinder having length 
L and radius r in a fluid with kinematic viscosity v is given by 

W = b@ln(!), V 
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FIGURE 4. Ascent data from the diapir experiments. Each symbol denotes the following values for 
buoyancy (cm/s2), kinematic viscosity (cm*/s), and source discharge (ml/s) : 0, 9.81, 493.0, 
1.2x lo-*; ~,9.81,493.0,8.0~lO~5;~,9.81,493.0,8.8~lO~4;~,9.8l,493.O,6.3~10~6;~,19.62, 
176.1, 8.3~10-~; ., 19.62, 176.1, 6.6~10-~; V, 19.62, 176.1, 1.9~10-~; A, 19.62, 176.1, 
6.0 x I, 4.91,703.5,5.1 x lop4. The curves 
are solutions to (3.4) and (3.5) calculated forb = 1. 

X ,4.91,703.5,4.0 x lod; +, 4.91,703.5,9.0 x 

where g’ = g@-pp) /p  is the buoyancy of the cylinder, p and pp being the fluid and 
cylinder (plume) densities. For a solid cylinder the proportionality factor 6 is a (Happel 
& Brenner 1965). 

In  this application the cylinder grows from a fixed, steady source so that 

and 

dL 
-= w, 
dt 

d 
- (xr2L)  = Q, 
dt (3-3) 

where t is time and Q is the source discharge rate. Equations (3.1)-(3.3) can be recast 
as a pair of coupled first-order differential equations for r and L :  

and 

_-  dL g’r2 
dt V 

- b -  In(:) 

_ -  dr --- b!!?!ln(f). 
dt 2xrL 2vL 

(3.4) 

(3.5) 

To test whether diapiric plumes ascend as growing, buoyant cylinders, we have 
integrated (3.4) and (3.5) numerically using the parameters for the eleven plumes 
shown in figure 4. The integrations were made using a second-order Runge-Kutta 
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scheme, starting at the first data point ( to ,  Lo) for each of the experiments. The 
starting radius ro was calculated using the assumption that dr/dt = 0 for t < to, so 
that ro is the root of 

The coefficient b was varied to find the best fit to  the whole dataset. The solid-cylinder 
value of + underestimated the rate for all eleven plumes. Ascent rates calculated for 
b = 1 .O are shown as solid curves in figure 4. Clearly, the growing-cylinder model fits 
the diapir-ascent data quite well, provided that a coefficient b N 1 is used. 

3.3. Dimensional analysis applied to cavity-plume ascent 
The trends of the raw cavity-plume data in figure 5 suggests that  the ascent rate for 
cavity plumes may approach an asymptotic power-law limit. If this is true, then the 
form of that power law should be deducible through dimensional analysis. 

In  an ideal experiment, the length L of a creeping plume should depend on time, 
the source discharge, the ambient-fluid viscosity, and the plume’s buoyancy, From 
these parameters, four velocity scales can be formed. Using the notation from $3.2, 
these are: (i) the ascent velocity scale L / t ;  (ii) the Stokes velocity scale for an 
equivalent sphere (g’lv) (Qt ) ,  (Batchelor 1970); (iii) from $3.2, the Stokes velocity for 
an equivalent cylinder (g’Q/v):; and (iv) the rate of momentum transfer by viscous 
diffusion (vlt):. This set is related by 

FIGURE 5. Ascent data from cavity-plume experiments for v = 810 cm2/s. Each symbol denotes the 
following values for buoyancy (cm/s2) and source discharge (ml/s): 0,  291, 1.8~ A, 196, 
3.8 x 10-3; m, 80, 3.3 x 10-4. The dashed curves correspond to (3.10); the solid curves are (3.10) 
with wall corrections applied. 
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FIQURE 6. Cavity-plume-ascent data from figure 5, with wall corrections applied, scaled 
according to the similarity relationship (3.9). The curves correspond to (3.10) and (3.13). 
FIQURE 6. Cavity-plume-ascent data from figure 5, with wall corrections applied, scaled 
according to the similarity relationship (3.9). The curves correspond to (3.10) and (3.13). 

where (3.8 u-c ) 

are the ratios of the velocity scales (i), (ii) and (iv) to (iii), respectively. If, in addition, 
the plume growth depends on its viscosity up or diffusivity K, then the ratios u,/v 
and K/u,  would need to be included in the argument list of (3.7). 

The parameter dj3 is proportional to the viscosity and is effectively a reciprocal 
Reynolds number. We expect that creeping plumes are self-similar with respect to 
this parameter, in which case (3.7) may be written 

(3.9) djl = lim F = f(OZ). 
93+m 

There are two special cases of (3.9). The first is the equivalent sphere, for which f 
is a linear function of dj2 .  For an inviscid sphere, the exact relationship is (Batchelor 

(3.10) 
1970) 

or, in dimensional form, L = - -  1. 
3v gf ("">" 471 

(3.11) 

The second special case is for the equivalent cylinder, for which f is a constant. The 
dimensional version of (3.9) is then 

L oc (3.12) 

It is interesting to note that the cavity-plume-ascent data does not fit the 
equivalent-sphere model (3.11), even though one might expect a close fit, based on 
their morphology. The appropriate version of (3.11) is plotted for each plume in figure 5 
as dashed lines. The solid lines are equations (3.1 1 )  with wall corrections for Stokes 
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droplets included (Clift, Grace 6 Weber 1978). To test whether this discrepancy can 
be resolved by treating cavity plumes as composite bodies, the data from the three 
plumes are plotted on figure 6 according to (3.9). The data collapse on to an asymptote 
given by 

GI N 0.16@,0, (3.13) 

or, in terms of dimensional variables, 

so that the ascent rate is approximately 

dL 
dt 

(3.14) 

(3.15) 

In summary, it is found that the ascent rate for diapirs closely approximates to 
the terminal velocity of buoyant cylinders growing from a fixed source, as expressed 
by (3.4) and (3.5), provided that a proportionality constant of b N 1 is used. The 
ascent rate of cavity plumes growing from a fixed, constant-strength source varies 
as d, slower than the ti ascent rate predicted for a steadily growing Stokes sphere. 

4. Ascent along fossil conduits 
The results of the previous experiments indicate that the ascent rate of a 

low-Reynolds-number starting plume is controlled by the ambient-fluid viscosity, 
and not by the viscosity of the plume fluid itself. This conclusion applies, for example, 
to the first cavity plume emitted by a fixed source. However, if the source discharge 
is variable, the same reasoning cannot be applied to subsequent eruptions because 
these will be strongly influenced by the presence of fossil conduits. 

The evolution of the old conduit, prior to a subsequent eruption, can be described 
as follows : A line conduit can be thought of as a pipe having a circular cross-section 
and flexible walls. When the source is shut off the conduit begins to drain, the wall 
collapsing in the process. The conduit collapses until its radius becomes so small that 
further drainage is inhibited. Suppose that its drainage rate is controlled by resistance 
to laminar flow of the conduit fluid. Then, after large times, the conduit radius R 
shrinks according to 

where z is vertical distance above the source. 
The effect of such a partially drained conduit on subsequent cavities is illustrated 

by the sequence in figure 7. The first panel shows a cavity plume ascending along 
a path that is slightly displaced from a fossil conduit. The old conduit modifies the 
strain field around the cavity in a manner which attracts the cavity fluid. The cavity 
fluid forces its way into the conduit by wedging the conduit walls apart. Provided 
with a low-resistance ascent path, the plume assumes a spindle shape and rapidly 
accelerates up the old conduit, draining the spherical cavity in the process. 

Thus even barely detectable fossil conduits represent an important heterogeneity 
for cavity plumes. So long as the old conduit remains nearly vertical, it can function 
as a plume guide and can greatly reduce the ascent time of repeated eruptions. 
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FIGURE 7. A sequence illustrating the intrusion of a spherical 
cavity plume into a fossil conduit. 

5. Cavity plumes in a uniform stream 
The stability of a rising cavity plume is readily upset by even slight relative motion 

between the plume source and the ambient fluid. This interaction is of critical 
importance for the formation of hot spots because mantle plumes must ascend 
through a thermally convecting environment. And, as both of these motions are 
creeping flows driven by buoyancy, it is expected that their velocities are roughly 
comparable, so that a rising plume is susceptible to being swept about by the 
background convective circulation. 

The modification of cavity plumes caused by relative motion between the ambient 
fluid and the plume source was first described by Skilbeck & Whitehead (1978). As 
the cavity ascends it is swept horizontally away from its source, and the umbilical 
conduit connecting the cavity to the source is tilted out of the vertical. Inclined to 
the vertical, the conduit is subject to gravitational instability. It breaks up into a 
sequence of blobs, which then rise individually. Whitehead (1982) investigated these 
conduit instabilities in a shear flow. His results showed that the conduit tends to 
become unstable when inclined by more than 30' to the vertical. He found that for 
large source-discharge rates the spacing between adjacent cavities is controlled by 
the depth of the shear layer; at  small source-discharge rates he found variable 
spacing, which was evidently independent of both the source discharge and the layer 
depth. 

The experiments presented in this paper were designed to study the morphology 
and systematic evolution of fully developed plumes generated by this instability. 
Instead of a shear flow, we inject the plumes into a uniform stream in which the source 
moves relative to the ambient fluid at a constant speed. This simpler velocity profile 
leads to a more uniform instabi1it.y than those found by Whitehead. 
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FIGURE 8. A detailed view of the formation of a cavity-plume chain 
from a steadily moving source. The scale is in inches. 

5.1. Apparatus 

Relative motion was produced by towing the plume source a t  a fixed rate through 
the Globe 11 32 glucose solution. A rectangular glass-walled tow tank was used, of 
83 cm length, 30 em width and filled to a depth of 25 em. The plume source consisted 
of a J-shaped glass tube, with its tip drawn into a needle. As in the stationary-source 
experiments, a&, ml-ruled burette served as a constant-head reservoir. The plume fluid 
was either pure water or a very dilute glucose solution. The glass tube was positioned 
so that the needle tip was 3.5 em above the tank base. Both the plume reservoir and 
the J-tube were attached to a traversing mount. The mount was driven at a selected 
tow speed by a rotating threaded rod. With this arrangement the position of the plume 
source could be determined at any time to 0.5 mm accuracy. The available towing 
distance was 73 em. Parameters controlled during each tow were the plume source 
discharge, plume buoyancy, ambient-fluid viscosity and the tow speed U .  

5.2. Qualitative description of the results 
Figure 8 illustrates the sequence of events leading to formation of a chain of cavities. 
The source is being towed from left to right. Plume fluid streams out behind the source 
forming a subhorizontal conduit. In this position i t  is gravitationally unstable and 
a buoyant bulge develops (as between marks 18 and 19, figure 8). The bulge interrupts 
the conduit flow and is rapidly inflated with plume fluid, forming a nearly spherical 
cavity, as shown on the extreme left. The cavity rises, detaching itself from the 
trailing conduit and ascends as a Stokes droplet. By the time the cavity detaches 
itself from the conduit, a new bulge has developed and the process is repeated. 

If the plume discharge is uniform and the tow speed U constant, each cavity is 
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FIQURE 9. The ascent of a cavity-plume chain behind a 
steadily moving source. The scale is in inches. 

a replica of its predecessors. The cavities are shed at regular time intervals; all have 
the same volume and ascend a t  the same rate. Away from the source region, the rising 
cavities, ascending at a constant speed W, form a linear chain inclined to the 
horizontal at an angle 8, where 

This is illustrated in figure 9. It was found that good replication - indicated by 
uniformly sloping chains - occurred only if the discharging stream was laminar. 
Turbulent fluctuations in the discharge tended to produce amplified fluctuations in 
cavity volumes and in their spacing. 

tan 8 = W / U .  (5.1) 

5.3. Dimensional analysis 

In  an ideal experiment, in which complete replication occurs, the cavity volume V 
depends on the source discharge and its buoyancy, the ambient-fluid viscosity and 
the tow speed. From these parameters, four velocity scales can be formed: (i) the 
cavity ascent speed - the equivalent-sphere velocity scale (g’/v) @; (ii) the equivalent- 
cylinder velocity scale (g’&/v)t; (iii) v2/&; and (iv) the tow speed U .  These lead to 
the following relationship : 

u, = v 7 2 , m  (5.2) 

where 
V2 

QU’ 
(g’Q/v)i , u=- (5.3 a*) tan@, li’, =- 

Cq‘E w =-= 
U 

n, = - 
v u  u 

and c is the Stokes velocity coefficient for each cavity. If the plume viscosity and 
the buoyancy diffusion coefficient were important, then the ratios v,/v and K / v p  
would appear in (5.2). Implicit in (5.2)-(5.3) is the assumption that the depth D of 
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g' Q U 
Tow (cm/sz) ( ml/s) ( cm/s) n, 4 

1 291 4.9 2.6 1.26 1.61 
2 29 1 22 2.6 2.56 3.42 
3 29 1 10 2.6 1.75 2.30 
4 195 0.17 2.6 0.19 0.25 
5 201 2.0 2.6 0.41 0.86 
6 197 2.2 2.6 0.46 0.88 
7 200 1.3 2.6 0.33 0.68 
8 20 1 0.16 2.6 0.14 0.24 
9 29 1 1.2 1.6 0.63 1.24 

10 29 1 1 .o 1.6 0.49 1.18 
11 29 1 2.6 1.7 0.96 1.76 
12 29 1 8.3 1.8 2.42 3.12 
13 29 1 7.1 1.8 2.12 2.88 
14 291 4.9 1.7 1.93 2.44 
15 29 1 0.30 1.7 0.32 0.60 
16 243 3.8 1.7 1.96 2.02 
17 243 2.7 1.7 0.97 1.70 
18 229 2.2 1.8 1 .oo 1.39 
19 229 1.2 1.8 0.58 1.03 
20 246 4.5 2.7 0.97 1.37 
21 188 1.3 1.8 0.56 1 .oo 
22 188 0.92 1.8 0.42 0.84 
23 222 2.9 1.9 1.13 1.53 
24 222 1.1 1.9 0.43 0.94 
25 29 1 5.6 5.0 0.53 0.89 

TABLE 1. Tow data 

- 
4.0 
3.9 
- 
- 

2.8 
- 
- 

2.5 
- 

- 
- 
3.5 
3.4 
3.1 
3.5 
- 
- 

4.8 

the ambient-fluid layer is not significant. This assumption requires that the cavity 
chain forms well below the upper surface. 

In  these experiments, and in the Earth's mantle, the parameter l7, is practically 
infinite and it is reasonable to suppose that its value does not influence the results 
to any extent. Thus we may assert similarity in (5.2) with respect to l7,, or 

Z7, = lim F =f(n,). 
n,+m 

(5.4) 

The spacing between cavities along a fully developed chain is given by 

d = U V / Q .  (5.5) 

There is an important special case leading to  a definite prediction for the form of 
(5.4) which corresponds to the condition that the cavity spacing is independent of 
the source discharge. Using (5 .5)  to substitute d for V in (5.4), this condition requires 
that 

= an,!, (5.6) 

where a is a constant. According to (5.6) the formulas for cavity spacing, replication 
time At, and volume are (using 5.3) : 
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1 10 0.1 

FIGURE 10. Cavity-chain-ascent data from table 1 scaled according to the similarity 
relationship (5.4). A, 0,  0,  High, medium and low tow speeds. 

5.4. Experimental results 
Table 1 lists the pertinent data for 25 tows that produced replicating plumes. Within 
this set the tow speed varied by a factor of 3, the source discharge by a factor of 140, 
and the chain slope by a factor of 20. Figure 10 presents this data non-dimensionalized 
according to (5.4). Also shown in the figure is a fit to (5.6). It is clear that the data 
are consistent with a $-power law having a proportionality factor a 1~ 0.55. The 
apparent independence of cavity spacing and source discharge was observed first by 
Whitehead (1982), and is substantiated by our results. The similarity laws (5.7a-c) 
that stem from it will be used in the next section to extrapolate to mantle plumes. 

The spacing between cavities can be used in conjunction with the slope data to 
obtain the Stokes velocity coefficient c. Combining ( 5 . 3 ~ )  with (5.5) yields 

c = 6) (Qd)S  17%'~. 

The spacing data listed in table 1 have been applied to this formula, yielding 

c = O . l O S & O . O l l .  (5.9) 

With the value of a given above, the coefficient in (5.7) becomes 

(a/c)g e 12. (5.10) 

As a check on this value we have determined c by applying ( 5 . 7 ~ )  to the spacing data. 
This alternative method gives 

c = 0.103&0.004. (5.11) 
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These two approaches give compatible results, based on their standard errors. For 
comparison, the Stokes velocity coefficient for a rigid sphere is c = $(3/41t)f N 0.0855 
and for an inviscid spherical droplet it is c = 5(3/47c)f N 0.1283 (Batchelor 1970). The 
values determined in the course of this experiment, (5.9) and (5.1 l ) ,  lie within these 
two limits. 

The fit to the similarity expression (5.6) shown in figure 10 breaks down at very 
large and at very small values of the dimensionless parameter l7,. At small values 
of l7,, corresponding to  large tow speed and small source discharge, the conduit is 
so nearly horizontal that  the fluid within i t  is essentially a t  rest. Plumes generated 
under these conditions can be viewed as the result of Rayleigh-Taylor instabilities 
of a stationary, horizontal cylinder of low-density fluid. Large values of the parameter 
ZI, correspond to slow tow speeds and large source discharge. I n  this limit the cavities 
are large and ascend rapidly, and can reach the upper surface of the fluid layer before 
the next cavity is formed. I n  this case, the depth of the fluid layer becomes an 
additional governing parameter. 

It is important to  attempt to reconcile our results with those of Whitehead (1982). 
He found that in the presence of a uniform background shear flow the spacing of 
cavities was controlled by the shear-layer depth in those cases where the shear was 
weak and the source discharge large. I n  those cases where the shear was strong and 
the source discharge small, the spacing was more variable and apparently independent 
of both the depth and the discharge. These findings are qualitatively in agreement 
with ours, based on the interpretation given in the previous paragraph. A strong 
source in a weak shear flow can generate plumes capable of traversing the layer before 
instabilities are able to disrupt them. The plumes leave behind a long tilted conduit, 
from which instabilities form more or less simultaneously at regular depth intervals. 
This is the regime emphasized by Whitehead. It corresponds to  very large values of 
h', in our experiments. At the other extreme, a weak source in the presence of strong 
shear will produce a bent-over plume, from which cavities will be ejected sequentially 
in time, but all from the same depth. In  this case the depth of the shear layer is 
immaterial. It is the regime that gives rise to  (5.6), and i t  is also the appropriate regime 
for those experiments by Whitehead in which the source discharge was small. 

6. Discussion 
Of t,he t w o  classes of creeping plumes, the low-viscosity cavity plumes more fully 

meet the requirements of a source for hot spots. Hot-spot volcanism indicates that 
the plume temperatures must exceed those in the ambient mantle. By virtue of the 
strong dependence of viscosity on temperature in mantle silicates, a temperature 
excess greater than 20@3OO0C brings the plume viscosity far below that of the 
ambient mantle. 

The experiments reported on here address only the subject of plume transport, and 
this is just one aspect of the larger topic of mantle plumes. In  particular, the results 
presented here say nothing about plume sources or the physics of plume emplacement 
in the lithosphere. Nevertheless, our results may be helpful in understanding two 
important observations: ( a )  hot-spot fixity and ( b )  replication by mid-plate hot spots. 

6.1. Hot-spot Jixity 

Why are hot spots fixed 1 Before attempting an answer based on the experimental 
results, i t  is important to  recognize that there are two types of oceanic hot spots. First, 
there arc ridge-centred hot spots. These lie along the axis of an actively spreading 
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mid-ocean ridge and produce a pair of tracks, one on each plate. As shown in figure 1, 
Iceland and Tristan da Cunha are of this type. The second type are mid-plate hot 
spots that generate a single track, such as Hawaii. The significance of this distinction 
for the plume hypothesis is the following. It is reasonable to suppose that thc 
circulation beneath a major spreading centre such as the Mid-Atlantic Ridge has a 
strong vertical component. Thus, a plume originating beneath the Mid-Atlantic Ridge 
would tend to become entrained into the upwelling region. The plume’s behaviour 
would resemble those described in 53 in that the ascent path would be nearly vertical 
and the position of the conduit would remain fixed in the upwelling. For this type 
of hot spot there is no difficulty in accounting for fixity, at least for fixity with respect 
to the ridge axis. 

The conditions are different for hot spots beneath plate interiors. Beneath 
fast-moving plates like the Pacific, ascending plumes would be subject to strong 
horizontal advection. In these cases i t  becomes difficult to understand how a 
continuously connected plume could generate a fixed hot spot. The cavity would rise 
to the base of the lithosphere and would be swept along at approximately the drift 
speed of the plate. If the conduit remained continuous during this process, it would 
continue to supply the cavity even after i t  became emplaced in the lithosphere. The 
result would be an isolated hot spot drifting with the plate, and not a track 
terminating at a fixed hot spot. 

In  fact, cavity plumes do not behave that way. We have shown that, in the presence 
of background circulation, they become discretized into a chain by the conduit- 
instability mechanism. Each member of a chain of discrete cavities, rising through 
a steady-state background flow, will follow the same trajectory, and they will reach 
the upper boundary - the base of the lithosphere - in an ordered sequence. Viewing 
this sequence from above, the pattern of cavities after arrival will form as a 
discontinuous track emanating from a fixed point. 

This reasoning indicates that the conduit instability in cavity plumes can produce 
stationary hot spots if the plume sources are fixed and if the background mantle 
circulation is stationary in time. However, i t  is known from plate reconstructions that 
the configuration of plate boundaries changes at a rate nearly as great as the drift 
rates of the plates themselves. By inference, mantle circulation must have a similar 
level of variability. Thus, for mid-plate hot spots, a more germane question is : how 
can they form a nearly rigid reference frame, given that the background mantle 
circulation is variable over the lifetime of a plume ? 

To answer this question, it is necessary to examine the relative fixity of two hot 
spots under different plates, with the circulation under the plates varying in time 
independently of each other. The kinematics of two such hot spots generated by 
cavity-plume chains is shown in figure 11. The horizontal position of each plume 
source relative to its hot spot is denoted by the vectors rl and rz. The vector Ar’ 
denotes the position of source 2 relative to source 1, and Ar  denotes the position of 
hot spot 2 relative to hot spot 1. For this discussion, suppose that the background 
motion U is horizontal and horizontally uniform. Then the source positions, relative 
to the hot spots, are given by 

and the position of hot spot 2 relative to hot spot 1 is 

Ar = A r r + j D z d z ,  
o w  
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Dl 0 - 
& 

FIGURE 11. Diagrammatic illustration of the ascent of cavity plumes through mantle 
convection. Notation is a8 defined within the text. 

where AU = U,- U,. The condition that the relative velocity between hot spots 
dAr/dt is small compared with the relative plate velocity AU(D, t )  can be expressed 
as 

This inequality is most likely to be met if the source lies on the lower boundary of 
the convecting layer -either the core-mantle boundary or the 670 km discontinuity. 
First, it is conceivable that sources there could remain stationary for 200 myr, so 
the source-drift term can be small. The second term on the right-hand side in (6.3) 
is proportional to the net horizontal transport along the ascent path. If convection 
in the mantle is exactly recirculatory, and if the source is beneath the convection, 
this term vanishes. And, while complete recirculation along any ascent path is 
unlikely, even partial recirculation makes this term small. Thus, if the plume sources 
are beneath the convecting region, they can generate a nearly rigid system of hot 
spots. 

Alternatively the plume sources could be situated within stagnant interiors of the 
convective eddies. If the convective pattern were stationary, then the sources could 
remain fixed and, as a consequence, the hot spots would remain fixed. The response 
of a hot spot generated by this type of source to changes in the convective flow is 
different from that of a hot-spot source on the lower boundary. In  particular, if the 
direction of plate motion changes, the hot-spot track generated by a boundary source 
will have a sharp bend, while the track generated by an interior source will bend with 
a large radius of curvature. The cavities generated by an interior source are subject 
to a large net horizontal transport, so that, when the direction of this transport shifts, 
the ascent path of the cavities shifts as well. This results in either a discontinuity 
or a broad bend in the hot-spot track. 

Approximately 40 myr ago the Pacific plate changed its spreading direction. This 
produced the bends in the three mid-Pacific hot-spot tracks (see figure 1). The bends 
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are observed to be quite sharp - the radius of curvature at the bend in the 
Hawaiian-Emperor chain is between 100 and 200 km (Morgan 1972; Whitehead 
1982). A plume source beneath the convecting region is consistent with this 
observation; a plume source within the convecting region is not. 

6.2. Hot-spot replication 
The moving-source experiments may provide at least a qualitative explanation for 
another important Observation - replication by mid-plate hot spots. It is clear from 
the morphologies shown in figures 8 and 9 that hot-spot volcanism produced by a 
cavity chain would be sequential in time. The question is then : does the replication 
time (5.7b) derived experimentally agree with the replication time seen in mid-plate 
hot spots Z 

Replication is best documented for the Hawaiian chain, but even for that case 
several interpretations are possible. The early analysis of radiometric ages by 
McDougall (1964) showed that on average the time interval between formation of 
successive volcanic centres in the youngest portion of the Hawaiian chain is 
approximately 0.8 myr. Vogt (1974) has divided the entire Hawaiian-Emperor chain 
into approximately 100 separate volcanic centres. If it is assumed that each volcanic 
centre was formed in sequential order, then according to Vogt’s tally the average 
replication interval during the past 70 myr is approximately 0.7 myr - essentially 
equal to the rate found by McDougall. This interpretation requires the source of 
melting to be very localized. We refer to this as the point-melting model. 

A more recent and more comprehensive study of age relations in the Hawaiian chain 
by Jackson, Silver & Dalrymple (1972) has led to a different interpretation. They note 
that, while the eruption pattern along the chain has generally progressed from 
northwest to southeast, in detail the pattern is neither exactly linear nor exactly 
sequential. Simultaneous eruptions occur over distance intervals of 200400 km. This 
suggests that the region of melt formation is distributed, at  any given time, over a 
rather broad area. The volcanic centres within this region are the collective result 
of a single large-scale heating event. The locations and relative ages of individual 
volcanoes within this region are governed primarily by the mechanical structure of 
the lithosphere, and not by variability of the source. From this point of view, the 
Hawaiian chain is produced by an ordered sequence of melting spots with characteristic 
diameters of up to 400 km. We refer to this as the distributed-melting model. For 
the Hawaiian chain the replication time interval implied by adjacent 400 km 
diameter melting spots is approximately 3.6 myr. 

For both of these interpretations the replication time intervals are short compared 
with the timescales characteristic of plate tectonics. It is therefore important to 
determine which of the two (if either) can be produced by instabilities occurring deep 
within the mantle. 

Skilbeck & Whitehead (1978) and Whitehead (1982) have already proposed conduit 
instabilities as a mechanism for formation of discrete volcanic centres. They were 
mostly concerned with providing an explanation for the observed spacing between 
volcanic centres. However, the experiments presented here suggest that for plumes 
the replication time interval is more fundamental than the cavity spacing. The spacing 
between identical cavities along a chain can be modified during ascent by the 
background circulation, but the time interval between arrivals at  the surface should 
be the same as the replication interval a t  the source. 

Equation (5.7 b)  can be used to extrapolate experimentally determined replication 
rates to mantle conditions. The parameters in (5.7b) refer to conditions near the plume 



530 P. Olson and H .  Singer 

source - deep within the mantle - and hence their values have a large uncertainty. 
For purposes of estimation we take v = 3 x 1021 cm2/s and U = 11 cm/yr (the 
present-day Pacific-plate speed). I n  order to estimate buoyancy, one must choose 
between two models. If the plume has thermal buoyancy only, then its density 
relative to the ambient mantle is limited by the mantle solidus and by thermal 
expansion to be approximately 2 yo or less. Thus g‘ N 20 cm/sz is an approximate 
upper limit for purely thermal plumes. Alternatively, if the plume is additionally 
buoyant because of the presence of either a melt phase or because of a difference in 
bulk composition relative to  the ambient mantle, g’ could be larger. A representative 
upper bound in this case might be g’ N 50. 

The replication intervals predicted by (5.7b) are approximately 8 myr for g’ = 20 
and approximately 5 myr for g’ = 50. These intervals are indeed an order of 
magnitude shorter than the lifetime of a hot spot and the timescale of mantle 
convection. They are still an order of magnitude longer than the replication interval 
implied by the point-melting model for the Hawaiian chain. However, they are 
generally consistent with the distributed-melting model proposed by Jackson et aE. 
(1972). 

In  summary, the qualitative behaviour of cavity plumes seen in these experiments 
lends support to  the mantle-plume hypothesis. Our results suggest that both hot-spot 
fixity and the tendency for replication by mid-plate hot spots can be explained in 
terms of the interaction between plumes and large-scale mantle convection. Deep 
mantle plumes can produce nearly fixed hot spots without requiring the mantle 
interior to be stagnant, as is often assumed. Conduit instabilities allow plumes to 
maintain approximate fixity in the presence of background circulation even if the 
circulation is time variable, provided that the sites from which the plumes originate 
are stationary. The experimental results also suggest an  interpretation of the age 
versus distqnce relations seen along mid-plate hot-spot tracks. Our results indicate 
that conduit instabilities in low-viscosity mantle plumes can replicate on timescales 
as short as 5 myr. 

This work has been generously supported through grants EAR 8407805 and ATM 
79-22068 from the National Science Foundation. We would like to thank S. Oneda 
for his valuable assistance in carrying out the experiments. 
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